
N94- 34045

Reinforcement Learning in Scheduling

Tom G. Dietterich* DoKyeong Ok Prasad Tadepalli

Wei Zhang

Department of Computer Science

Oregon State University

Corvallis, Oregon 97331-3202

1

Abstract

The goal of this research is to apply reinforcement learning methods to real-world problems like
scheduling. In this preliminary paper, we show that learning to solve scheduling problems such as the

Space Shuttle Payload Processing and the Automatic Guided Vehicle (AGV) scheduling can be usefully
studied in the reinforcement learning framework. We discuss some of the special challenges posed by
the scheduling domain to these methods and propose some possible solutions we plan to implement.

Introduction

Scheduling is a well-studied problem and there are a variety of scheduling problems [BAKER74, FOX87,
SADEH91]. Unfortunately, almost all of the nontrivial versions of the scheduling problem are at least

NP-hard [GAREY79]. However, since the scheduling problems that occur in the real world may not be

entirely arbitrary, there is reason to believe that there exists some structure or regularity which may not

be directly apparent. The goal of this research is to build learning systems that are capable of discovering

such hidden regularities in the environment of the scheduler and exploit them to efficiently build reasonablygood schedules.

We are currently focusing on two specific scheduling problems. One is the problem of Space Shuttle

Payload Processing [ZWEBEN92]. The goal in this domain is to schedule a set of tasks so that they finish

before their respective deadlines while obeying a given set of precedence and resource constraints. The

second application domain is Automatic Guided Vehicle (AGV) scheduling. The problem here is to make

an on-line assignment of transportation tasks to AGVs such that the average expected cost of transport
over the long run is minimized. The transportation tasks are randomly generated, and need to be serviced
on-line and hence the system cannot plan the order of task execution in advance.

These two application domains are somewhat different in that the first one emphasizes the problem
of efficiently searching the scheduling space, and the second one emphasizes optimal real-time decision

making in a stochastic environment. Nevertheless, the same basic approach of reinforcement learning isapplicable in both cases.

Reinforcement learning is an unsupervised learning method where an agent learns from the feedback or

reinforcement provided by the environment as a result of its actions. The reinforcement can be positive

(reward) or negative (punishment) and can be delayed in time from the action that is responsible for it.

The goal of the learner is to learn to behave in such a way that maximizes its total expected reward.

*The first and the last authors are supported by a grant from NASA, number 1293.

194



It iseasyto seethe correspondencebetweenthe AGV schedulingandreinforcementlearning.Assume
that theAGV getsseveralrequeststo transportobjectsfromoneplaceto another.TheAGV mightchoose
to servetheserequestsin someorder.Whenevera requestis served,the AGV getsa reinforcementwhich
mightbe inverselyproportionalto thetimedelaywith whichtherequestis served.Theproblemthen is to
learnanoptimalpolicy(a mappingfrom statesof theworld to AGV actions)that resultsin themaximum
expectedrewardrate.

Although lessstraightforward,it is alsopossibleto framethe spaceshuttleschedulingproblemin
the reinforcementlearningcontext. In this context,the schedulertakesabstractschedulingactionssuch
as movingtasksfrom one time slot to another,and from one machineto another. It getsa negative
reinforcementproportionaJto the costof thefinal conflict-freeschedule.If theschedulerisableto correctly
predictthecostofthefinalconflict-freeschedulefromintermediatestates,thenthesearchcomplexitycanbe
reducedby choosingthe schedulingactionthat will minimizethe final costof the schedule.The problem
thus reducesto learningto predict the final costof schedulefrom intermediatestateswith scheduling
conflicts.

Manyof thereinforcementlearningmethodsarebasedonon-lineversionsof dynamicprogramming.In
dynamicprogramming,the costor valueof a stateis computedby backingup the costsof the succeeding
states. Insteadof computingthe valueof a stateonceandfor all from the valuesof all its neighbors,in
reinforcementlearning,the valueof astateis incrementallyupdated,asandwhenits neighbor'svaluesare
updated.Both the on-lineandoff-lineversionsof dynamicprogrammingstorea tableof state-valuepairs.
Theon-lineversionusesthis tableto chooseanactionthat minimizestheexpectedcostof the final state.

Oneof the problemswith the table-basedreinforcementlearningtechniqueslike Q-learningis their
spacecomplexity[WATKINS92].In the worstcase,theyneedtablesasbig asthe entire statespaceand
somemore,which is unrealisticin nothingbut the trivial of domains.This alsotranslatesto very slow
convergenceof learning,becausemoststatesin the statespacehaveto beupdatedmanytimesbeforethe
learner'sactionsconvergeto optimalperformance.

Reinforcementlearningresearchersusesupervisedlearningmethodsto storethe tablescompactlyand
to convergequickly to the correctpolicy. For example,the tableof state-valuepairscanbeusedto train
a neural net whichcan then predict the valuesof statesthat havenot beenstored. Similarly wecan
alsoconsiderstoring the state-valuepairs without generalizingthemand useapproacheslike the nearest
neighboralgorithmsto predictthe valuesfor the unseenstatesby interpolatingbetweenthe storedstates
whicharenearestto the unseenstate. Anotherapproachwouldbe to approximatethe state-valuetable
by a set of peiecewisepolynomialfunctionsusingmethodslike splineinterpolation. Such"structural
generalization"methodsgiveriseto acompactstorageof statesaswellasaquickerconvergencewhenthe
function theyare trying to approximatesuits their structure.

Oneof theproblemsin reinforcementlearningis tradingoff explorationwith optimal decisionmaking.
Exploration facilitateslearning new knowledgewhileoptimal decisionmaking exploitsold knowledge.
However,mostwidelystudiedexplorationstrategiesarerandom.Weplanto investigatemoresophisticated
strategiesthat explore"nearmiss"states.Thesestrategiesseemeffectivefor learningpiece-wisepolynomial
functionswith manylocally irrelevantfeatures.

The rest of the paper is organizedas follows. The next sectionintroducesreinforcementlearning.
Section3 introducesthe NASAspaceshuttlepayloadprocessingdomainandputs it in theframeworkof
reinforcementlearning. Section4 doesthe samefor the AGV schedulingdomain.Section5 discussesthe
structuralgeneralizationproblemin reinforcementlearningand proposesa numberof solutionsthat we
plan to implement.Section6 discussessomeof theotherchallengesthat the schedulingdomainoffersto
reinforcementlearning,andsomeproposedsolutions.Thelast sectionconcludeswith a summary.

195



2 Reinforcement Learning

Reinforcement learning is best suited to a class of stochastic optimal control problems called Markovian
decision problems [BART093].

The reinforcement learning problem can be described by a 4-tuple (S, A,p, C). S is a finite set of states

and A is the set of actions, pi,j(a) is the probability for every state pair (i,j) and action a E A, that

executing action a in state i results in state j. The Markovian assumption means that this probability is

independent of the states before i. ct = C(it, at) denotes the immediate cost or reward of executing an

action at in a state it at time t. In some versions of the problem, when the horizon is not finite, the cost
or reward is discounted by multiplying it with a discount factor 7 t. where

A policy p is a mapping from the state it at time t to a recommended action in A. fu denotes the
expected value of the infinite-horizon discounted cost, given by:

fu(it) = Eu [_=o7t+Jc,+j]

where E u is the expectation assuming that the controller always follows policy _. An optimal policy p* is
one that minimizes fu, and f* is its expected discounted cost.

Knowing f* would allowone to construct #*, because, by the results of dynamic programming, any

policy which is greedy (chooses the action that results in the least cost state) with respect to f* is optimal.

Various versions of dynamic programming (DP) compute f* by backing up costs from the last state

to previous states in different orders [BART093]. Reinforcement learning methods use on-line versions of

dynamic programming. Some of these methods, including Q-learning, do not assume that the transition

probability matrix p is known. Q-learning eliminates the need for separately learning the p matrix, by

learning a so called Q-function from state action pairs to the expected discounted costs of taking that
action in that state. In particular, if it is the current state and at is the action taken, then

Q(it, at) = Z_=oTJct+j

Since the value of a state V(i) is the value of the best action in that state, we can write

V(it) = rain Q(it, a)

and, it follows that

Q(it, at) = ct + 7U(it+l)

In Q-learning, the Q values of the final "absorbing states" can be immediately calculated, which are

backed up from last to first for the states the system has passed through. More formally, the Q-function is

computed in stages as follows. If S_ is the sequence of observed states and actions (sl, al, s2,...) at stage
k, and _ is the learning rate, Qk is updated for states in Sk from last to first as follows:

Qk(it, at) = (1 - o_)Qk_l(it, at) + (_(ct + 7Va-l(it+l)),

where, Vk(i,) = min_ Qk(it, a)

The theoretical results show that if the system explores every state infinitely often, then it eventually
converges to the optimal Q values for all the state action pairs.

196



3 The Space Shuttle Payload Processing

The NASA Space Shuttle Payload Processing domain is an example of Job Shop Scheduling problem

[ZWEBEN92]. Each 'mission' consists of a set of payload/carrier pairs, and a launch date. Each carrier

requires a distinct set of tasks to prepare and process the payloads for a mission. The tasks are constrained

by precedence and resource relationships. The resources are grouped into resource pools. The goal is

to schedule all the tasks needed to load the carriers onto the orbiter, avoiding the resource contention

problems, satisfying all precedence constraints while minimizing the total expected length of the schedule.

More details can be found in [ZHANG93].

The Space Shuttle Payload Processing problem can be viewed as a state space search problem, where

states are partial schedules with possible conflicts, and operators move from state to state by moving tasks.

The problem is to find a conflict-free schedule of minimum length. Unlike in some other domains, there is

a lot of flexibility in defining the operators in the scheduling domain. Individual tasks can be moved by a

constant amount, or by an amount that depends on the availability of resources and the schedule of other

tasks, or groups of tasks can be rescheduled using a single operator. One could also consider a hierarchy

of abstract to more primitive operators. We plan to experiment with all these different options.

The search control knowledge for scheduling is expressed as an evaluation function that estimates the

discounted final cost of the schedule reachable from the current state. In reinforcement learning methods

like TD(A), this amounts to an estimate of f* [SUTTON88]. Q-learning estimates it from the state that

results by applying a scheduling action to the current state.

If the evaluation function is accurate, then it can be used to select the action that leads to the state

with the least cost without search. When the evaluation function is only approximate, as is likely to be the

case in complex domains like scheduling, it can be combined with look ahead search, as done in 2-person

games like chess, to exploit the benefits of both knowledge and search.

4 The AGV Scheduling Problem

Automatic Guided Vehicles or AGVs are increasingly being used in manufacturing plants to cut down the

cost of human labor in transporting materials from one place to another. Optimal scheduling of AGVs is

a non-trivial task. In general, there can be multiple AGVs, with some routing constraints, e.g., two AGVs

cannot be on the same route fragment going in opposite directions. The AGVs might also have capacity

constraints such as the total load and volume they can carry, and the total time they can work without
recharging.

The transportation requests are stochastic and hence cannot be planned for in advance. The AGV gets

a reward whenever it successfully serves a request. The behavior of the AGV is random in the beginning,

but as it accumulates knowledge of the request patterns and the transportation costs involved, we expect

it to perform better in the sense of serving more requests in a given time. In the reinforcement learning

context, this corresponds to maximizing the average reward per unit time rather than maximizing the

discounted reward. We can also associate a non-uniform reward structure with the requests and give more
reward for serving some requests and not the others.

A learning AGV is very attractive in a manufacturing plant because the scheduling environment is

constantly changing and it is hard to manually optimize the scheduling algorithm to each changed situation.

A learning AGV would automatically adapt itself changes in its environment, be they are added machines,

changes in the AGV routes, or changes in the request rates and patterns.

Once again, we treat the AGV scheduling as a state space search, and treat the status of various

requests and the AGV as a state. The best action to take at any time depends on the current state. The

197



optimal policy canbe learnedusingmethodslike Q-learning.

5 Structural Generalization in Reinforcement Learning

One of the major issues in reinforcement learning is that of structural generalization. This can also be

seen as choosing a representation for the evaluation function. An extreme representation is as a table of

mappings from state descriptions to their evaluations. This amounts to no structural generalization at all,

since no two state descriptions will have the same entry in the table. Representing it as a table of mappings

is infeasible in many scheduling domains due to their size and slow convergence. One of the requirements
is also that real-valued functions should be representable.

One of the popular representations of evaluation functions is neural nets. Recently a program that used

TD(A) in combination with neural nets to represent its evaluation function to learn to play Backgammon

reached grand-master level performance and is ranked as the best Backgammon program in the world

[TESAUR092]. The success of neural net learning crucially depends on being able to find good encodings
for states and operators.

Another reasonable representation is piece-wise polynomial functions. These functions can be learned

by nearest neighbor algorithms. In the extreme version of these algorithms, no generalization is necessary.
Each example is stored as an input-output pair. To predict the output for an unseen example, its nearest

(using some distance metric like the Euclideanm distance) K neighbors are examined and the output is

calculated to be the weighted sum of their outputs. One of the disadvantages of this approach is that it

needs a lot of memory to store all the examples, and hence the name "memory-based" [MOORE93]. An
optimization that is usually done is to store an example only when the current set of examples does not
make a correct prediction for this example.

6 Research Issues

The scheduling domain offers some interesting challenges to reinforcement learning.

One of the complexities of the scheduling problems like the space shuttle scheduling is that they have a

large number of applicable operators at any state leading to a search space with a large branching factor.

When the branching factor is large, it is not realistic to choose the best action by trying each possible

action and comparing the results, as the standard greedy policy adopted in reinforcement learning methods
usually does. In this case, we can use a random sample greedy strategy which chooses the best action from

among a randomly sampled subset of all possible actions. We also plan to experiment with methods such

as simulated annealing and gradient descent search, which do not involve testing each possible next state.

There are also usually a large number of irrelevant features in the state description of the scheduling
problems. The presence of irrelevant features makes it difficult to generalize correctly. For example, in the

nearest neighbor approach, the irrelevant features distort the distances between examples so that examples
which are close in relevant features appear distant with irrelevant features and vice versa. Since the number

of examples needed to converge in this approach varies exponentially with the number of features, a large

number of irrelevant features works against this approach [AHA91]. Adjustable feature weights has been

proposed as a solution for this problem [AHA91]. While this method eliminates globally irrelevant features,
one problem with it is that it does not take local irrelevancy into account.

One way to determine local irrelevancy is through intelligent exploration. Most reinforcement learning
methods use random exploration to gain new knowledge about their search spaces. However, if one knows

that the evaluation function has certain structure, say that it is representable as a piece-wise polynomial

198



functionwith manylocally irrelevantfeatures,then it maybepossibleto explorethis searchspacemore
intelligently.Forexample,it maybe possibleto determinelocally irrelevantfeaturesby generating"near
miss"examples,which areexampleswhichdiffer from a baseexampleby exactlyonefeaturein a small
amount,but changethe valueof thefunction.Theexistenceof anearmissexamplein afeatureshowsthe
localrelevanceofthat feature.Generatingnearmissexamplesanddeterminingthevaluesof theevaluation
functionat theseexamplesaddthe ability of intelligentexplorationto reinforcementlearning.

7 Conclusions

In this paper, we suggested that reinforcement learning can be usefully employed in scheduling domains to

learn search control knowledge as well as to learn to do optimal real-time scheduling. The work reported

here is preliminary and much remains to be done. We plan to implement the ideas reported in this paper,

test them and report the results in the near future.

References

[AHA91] Aha, D. W., Kibler, D., and Albert, M. K. Instance-based learning algorithms. Machine Learning,

6 (1), 37-66. 1991.

[BAKER74] Baker, K.R., Introduction to Sequencing and Scheduling, John Wiley & Sons, Inc., 1974.

[BART093] Barto, A. G., Bradtke, S. J., and Singh S. P. Learning to Act using Real-Time Dynamic

Programming. To appear in AI Journal special issue on Computational Theories of Interaction and

Agency.

[FOX87] Fox, M. S. Constraint-Directed Search: A Case Study of Job-Shop Scheduling. Morgan Kaufmann,

Los Altos, CA, 1987.

[GAREY79] Garey M.R., and Johnson, D.S. Computers and Intractability: A Guide to the Theory of

NP-Completeness, W.H. Freeman and Company, New York, 1979.

[MOORE93] Moore, A.W. and Atkeson, C. G. Memory-based Reinforcement Learning: Converging with

less data and less real time. (to appear).

[SADEH91] Sadeh, N. Look-ahead Techniques for Micro-opportunistic Job Shop Scheduling. Ph.D. Thesis,

School of Computer Science, Carnegie Mellon University, available as CMU-CS-91-102, 1991.

[SUTTON88] Sutton, R. S. Learning to Predict by the Methods of Temporal Difference. In Machine

Learning, 3, 9-44, 1988.

[TESAURO92] Tesauro, G. Temporal Difference Learning of Backgammon Strategy. In Proceedings of

Machine Learning Conference, 1992.

[WATKINS92] Watkins, C. J. C. H. and Dayan P. Q-learning. Machine Learning, 8:279-292, 1992.

[ZHANG93] Zhang, W. A Study of Reinforcement Learning for Job-shop Scheduling. Ph.D. Thesis pro-

posal, Oregon State University, Corvallis, OR, 1993.

[ZWEBEN92] Zweben, M., Davis, E. Daun, B., Drascher, E., Deale, M., and Eskey, M. Learning to

improve constraint-based scheduling. Artificial Intelligence, 58:271-296, 1992.

199


